Macaulay2 » Documentation
Packages » WhitneyStratifications :: polarSequence
next | previous | forward | backward | up | index | toc

polarSequence -- Computes the list of multiplcities of a subvareity in the polar varities of another vareity.

Description

Below we compute the polar multiplcity sequence for the origion and the z-axis in the Whitney umbrella.

i1 : R=QQ[x..z]

o1 = R

o1 : PolynomialRing
i2 : IZ=ideal(y^2*z-x^2)

            2     2
o2 = ideal(y z - x )

o2 : Ideal of R
i3 : IX=ideal(x,y,z)

o3 = ideal (x, y, z)

o3 : Ideal of R
i4 : polarSequence(IX, IZ)

o4 = {0, 1, 2}

o4 : List
i5 : polarSequence(ideal(x,y), IZ)

o5 = {0, 0, 2}

o5 : List

Note that for any polar varities of $Z$ which do not contain $X$ we obtain multiplcity 0.

Ways to use polarSequence:

  • polarSequence(Ideal,Ideal)
  • polarSequence(Ideal,Ideal,List)

For the programmer

The object polarSequence is a method function with options.


The source of this document is in WhitneyStratifications.m2:1792:0.