

# Topological Invariants and the Maximum Likelihood Degree of a Toric Variety

#### Martin Helmer

University of California at Berkeley joint work with Serkan Hosten and Jose Israel Rodriguez

- N. Budur, B. Wang (i.e. "Bounding the maximum likelihood degree") relate the maximum likelihood (ML) degree to the degree of a (very affine) Guass map associated to a subvariety of the complex torus  $(\mathbb{C}^*)^n$ .
- Separately, the projective conormal variety has been studied in many settings and has deep connections to many invariants studied in intersection theory.
- These connections often lead to simple expressions for invariants (such as degrees of projection maps).
- For projective toric varieties many invariants of interest have simple combinatorial expressions; we will focus on this case.

- We wish to determine under what conditions the ML degree can be linked to the projective conormal variety.
- We see that when  $X = X_A$  is a projective toric variety we can give a precise notion of an embedding of its affine cone  $\tilde{X}_A$  in  $\mathbb{C}^n$  via general coordinates that will let us link these objects.
- This allows us to use ideas from the intersection theory of projective algebraic varieties to study the ML degree.

## The Guass map from subvarieites of $(\mathbb{C}^*)^n$

Let  $\mathfrak X$  be a subvariety (or an analytic subset) of the complex torus  $(\mathbb C^*)^n$ . The tangent space to  $\mathfrak X$  at a point  $p\in \mathfrak X$  can be identified with a vector subspace  $\Theta_{\mathfrak X,p}\subset \mathbb C^n$ .

## The Guass map from subvarieites of $(\mathbb{C}^*)^n$

Let  $\mathfrak X$  be a subvariety (or an analytic subset) of the complex torus  $(\mathbb C^*)^n$ . The tangent space to  $\mathfrak X$  at a point  $p\in \mathfrak X$  can be identified with a vector subspace  $\Theta_{\mathfrak X,p}\subset \mathbb C^n$ .

Let Gr(n, n-1) denote the Grassmann variety of (n-1)-dimensional vector subspaces in  $\mathbb{C}^n$ .

The Guass map is the projection  $\gamma:\mathcal{P}\to\operatorname{Gr}(n,n-1)$  where

$$\mathcal{P} = \overline{\{(p,\alpha) \in \mathfrak{X}_{\mathrm{reg}} \times \mathrm{Gr}(n,n-1) \mid L_{\alpha} \supseteq \Theta_{\mathfrak{X},p}\}} \subseteq \mathfrak{X} \times \mathrm{Gr}(n,n-1)$$

and  $L_{\alpha}$  is the vector subspace corresponding to  $\alpha \in Gr(n, n-1)$ .

## The Guass map from subvarieites of $(\mathbb{C}^*)^n$

Let  $\mathfrak X$  be a subvariety (or an analytic subset) of the complex torus  $(\mathbb C^*)^n$ . The tangent space to  $\mathfrak X$  at a point  $p\in\mathfrak X$  can be identified with a vector subspace  $\Theta_{\mathfrak X,p}\subset\mathbb C^n$ .

Let Gr(n, n-1) denote the Grassmann variety of (n-1)-dimensional vector subspaces in  $\mathbb{C}^n$ .

The Guass map is the projection  $\gamma:\mathcal{P}\to\operatorname{Gr}(n,n-1)$  where

$$\mathcal{P} = \overline{\{(\textbf{\textit{p}},\alpha) \in \mathfrak{X}_{\mathrm{reg}} \times \mathrm{Gr}(\textbf{\textit{n}},\textbf{\textit{n}}-1) \mid \textbf{\textit{L}}_{\alpha} \supseteq \Theta_{\mathfrak{X},\textbf{\textit{p}}}\}} \subseteq \mathfrak{X} \times \mathrm{Gr}(\textbf{\textit{n}},\textbf{\textit{n}}-1)$$

and  $L_{\alpha}$  is the vector subspace corresponding to  $\alpha \in Gr(n, n-1)$ .

N. Budur, B. Wang relate  $\deg(\gamma)$  (that is  $\#\gamma^{-1}(\alpha)$  for a general  $\alpha \in \gamma(\mathcal{P}) \subset \operatorname{Gr}(n, n-1)$ ) to the ML degree.

Goal: relate  $deg(\gamma)$  to invariants of a projective variety (associated to  $\mathfrak{X}$ ).

## Projective Conormal varieties and Polar degrees

Let  $X \subset \mathbb{P}^{n-1}$  be a projective variety, it's conormal variety is

$$\operatorname{Con}(X) = \overline{\{(p,L) \mid p \in X_{\operatorname{reg}} \text{ and } L \supseteq T_p X\}} \subset \mathbb{P}^{n-1} \times (\mathbb{P}^{n-1})^{\vee}.$$

Let  $c = \operatorname{codim}(X)$ ,  $\mathcal{J}$  be the  $(c+1) \times (c+1)$ -minors of the matrix  $[J(X) \ y]^T$ .

The ideal of Con(X) is  $\mathcal{K} = (I_X + \mathcal{J}) : (I_{Sing(X)})^{\infty}$ .

## Projective Conormal varieties and Polar degrees

Let  $X \subset \mathbb{P}^{n-1}$  be a projective variety, it's conormal variety is

$$\operatorname{Con}(X) = \overline{\{(p,L) \mid p \in X_{\operatorname{reg}} \text{ and } L \supseteq T_p X\}} \subset \mathbb{P}^{n-1} \times (\mathbb{P}^{n-1})^{\vee}.$$

Let  $c = \operatorname{codim}(X)$ ,  $\mathcal{J}$  be the  $(c+1) \times (c+1)$ -minors of the matrix  $[J(X) \ y]^T$ .

The ideal of 
$$Con(X)$$
 is  $\mathcal{K} = (I_X + \mathcal{J}) : (I_{Sing(X)})^{\infty}$ .

It's class in the Chow ring  $A^*(\mathbb{P}^{n-1}\times (\mathbb{P}^{n-1})^\vee)\cong \mathbb{Z}[H,h]/(H^n,h^n)$  is

$$[\operatorname{Con}(X)] = \delta_0 H^{n-1} h + \dots + \delta_{n-2} H h^{n-1}.$$

The integers  $\delta_0 = \delta_0(X), \dots, \delta_{n-2} = \delta_{n-2}(X)$  are the polar degrees of X.

In the language of books such as:

E. Miller, and B. Sturmfels: Combinatorial commutative algebra the polar degrees are the multidegree of the bigraded ideal K.

# Polar degrees of toric varieties (and the Chern-Mather class)

Fix an integer  $d \times n$ -matrix  $A = (a_1, a_2, \ldots, a_n)$  of rank d with  $(1, 1, \ldots, 1)$  in its row space. Each column vector  $a_i$  represents a monomial  $t^{a_i} = t_1^{a_{1i}} t_2^{a_{2i}} \cdots t_d^{a_{di}}$ . The affine toric variety  $\tilde{X}_A$  is the closure of  $\{(t^{a_1}, \ldots, t^{a_n}) \in \mathbb{C}^n : t \in (\mathbb{C}^*)^d\}$ .

Write  $X_A \subset \mathbb{P}^{n-1}$  for the *projective toric variety* with the same parametrization.

# Polar degrees of toric varieties (and the Chern-Mather class)

Fix an integer  $d \times n$ -matrix  $A = (a_1, a_2, \ldots, a_n)$  of rank d with  $(1, 1, \ldots, 1)$  in its row space. Each column vector  $a_i$  represents a monomial  $t^{a_i} = t_1^{a_{1i}} t_2^{a_{2i}} \cdots t_d^{a_{di}}$ . The affine toric variety  $\tilde{X}_A$  is the closure of  $\{(t^{a_1}, \ldots, t^{a_n}) \in \mathbb{C}^n : t \in (\mathbb{C}^*)^d\}$ .

Write  $X_A \subset \mathbb{P}^{n-1}$  for the *projective toric variety* with the same parametrization.

## Theorem (M. Helmer - B. Sturmfels, 2016)

The polar degrees of the projective toric variety  $X_A$  are

$$\delta_i(X_A) = \sum_{j=i+1}^d (-1)^{d-j} {j \choose i+1} V_{j-1} \quad \text{for } i=0,1,\ldots,d-1,$$

where  $V_j$  is the sum of the Chern-Mather volumes of all j-dimensional faces of P = conv(A).

If  $X_A$  is smooth these are the normalized lattice volumes.

#### **Relations in General Coordinates**

#### **Theorem**

Let  $\tilde{X}$  be an affine cone in  $\mathbb{C}^n$  corresponding to a projective variety  $X \subset \mathbb{P}^{n-1}$  and let  $\mathfrak{X} = \tilde{X} \cap (\mathbb{C}^*)^n$  be the very affine part of  $\tilde{X}$ . Fix general coordinates (i.e. coordinate transformations chosen from a suitable Zariski open dense set) for the embedding of X in  $\mathbb{P}^{n-1}$ , and correspondingly for the embeddings of  $\tilde{X}$  in  $\mathbb{C}^n$  and  $\mathfrak{X}$  in  $(\mathbb{C}^*)^n$ . Writing  $\mathfrak{X}$  in these coordinates let

$$\gamma: \overline{\{(p,\alpha)\in \mathfrak{X}_{\mathrm{reg}}\times \mathrm{Gr}(n,n-1)\mid L_{\alpha}\supseteq \Theta_{\mathfrak{X},p}\}} \to \mathrm{Gr}(n,n-1)$$

be the Guass map. Then we have that

$$\deg(\gamma) = \delta_{n-1}(X).$$

## General Coordinates for an embedded Toric Variety

Let  $X_A \subset \mathbb{P}^{n-1}$  be the projective toric variety defined by an integer  $d \times n$ -matrix A.

The principal A-determinant variety 
$$V(E_A) = \bigcup_{\substack{\alpha \text{ a face} \\ \text{of conv}(A)}} X_{A \cap \alpha}^{\vee}$$
.

#### **Theorem**

Let  $\lambda = (\lambda_1, \dots, \lambda_n) \in (\mathbb{C}^*)^n$  be such that  $\lambda \notin V(E_A)$  and let  $\lambda \cdot \tilde{X}_A$  denote the change of coordinates on  $\tilde{X}_A$  induced by the natural torus action  $\lambda \cdot (x_1, \dots, x_n) = (\lambda_1 x_1, \dots, \lambda_n x_n)$ ; similarly let  $\gamma$  be the Guass map associated to  $\mathfrak{X} = \lambda \cdot \tilde{X}_A \cap (\mathbb{C}^*)^n$  in  $(\mathbb{C}^*)^n$ . Then  $\lambda \cdot \tilde{X}_A$  is in general coordinates and

$$\deg(\gamma) = \delta_{n-1}(X) = \operatorname{Vol}(P),$$

where P = conv(A).

#### **Euler Characteristic**

In "The Gauss map and a noncompact Riemann-Roch formula for constructible sheaves on semiabelian varieties" J. Franecki and M. Kapranov relate the (signed) topological Euler characteristic of  $\mathfrak{X} \subset (\mathbb{C}^*)^n$  to  $\deg(\gamma)$ .

In general coordinates, these results, along with the previous result and the combinatorial description of the polar degrees of projective toric varieties gives the following.

### **Corollary**

Let  $X_A$  be the projective toric variety defined by a  $d \times n$  integer matrix A, let  $\tilde{X}_A$  be the corresponding affine cone and let  $P = \operatorname{conv}(A)$ . Also let  $\lambda = (\lambda_1, \dots, \lambda_n) \in (\mathbb{C}^*)^n$  be such that  $\lambda \notin V(E_A)$  and set  $\mathfrak{X}_\lambda = (\lambda \cdot \tilde{X}_A) \cap (\mathbb{C}^*)^n$ . We have that the (signed) topological Euler chacteristic of  $\mathfrak{X}_\lambda$  is given by

$$\deg(\gamma) = (-1)^d \chi(\mathfrak{X}_{\lambda}) = \delta_{n-1}(X_A) = \operatorname{Vol}(P). \tag{1}$$

## Relation to ML Degree

A result of J. Huh ("The maximum likelihood degree of a very affine variety") relates the signed Euler characteristic of a smooth subset  $\mathfrak{X}$  of  $(\mathbb{C}^*)^n$  to the maximum likelihood degree.

Showing that  $\mathfrak{X}_{\lambda}=(\lambda\cdot \tilde{X}_{A})\cap (\mathbb{C}^{*})^{n}$  is smooth, gives the following.

### **Corollary**

Let  $X_A$  be the projective toric variety defined by an integer matrix A, let  $\tilde{X}_A$  be the corresponding affine cone and let  $P = \operatorname{conv}(A)$ . Also let  $\lambda = (\lambda_1, \dots, \lambda_n) \in (\mathbb{C}^*)^n$  be such that  $\lambda \notin V(E_A)$  and set  $\mathfrak{X}_{\lambda} = (\lambda \cdot \tilde{X}_A) \cap (\mathbb{C}^*)^n$ . We have that the maximum likelihood degree of  $\lambda \cdot X_A$  is given by

$$(-1)^{d}\chi(\mathfrak{X}_{\lambda}) = \text{MLdegree}(\lambda \cdot X_{A}) = \text{Vol}(P). \tag{2}$$

## **Summary and Future Work**

- We used classical projective invariants to study the degree of the very affine Guass map, and the ML degree.
- For toric varieties we gave explicit conditions for when these projective invariants give the degree of the very affine Guass map and the ML degree.
- The next question is to explore relations between the ML degree and non-toric varities in general coordinates.
- Thank you for listening!