Name:

Problem 1. (15 points.) Let $f(x) = x^3 + 11x^2 + 13x + 1$ and let $\mathbb{Q}[x]$ be the polynomial ring in x with rational coefficients. Consider the quotient ring $R = \mathbb{Q}[x]/\langle f(x) \rangle$.

• Is R a field? Is R an integral domain? Prove your answers.

Solution: Yes, R is a field and, hence, also an integral domain.

Proof: We know from a theorem from class (Theorem 16.35 in Judson) that, for S a ring and I an ideal in S, S/I is a field if and only if I is a maximal ideal. We also know from a theorem from class (Theorem 17.22 of Judson) that if F is a field, $p(x) \in F[x]$, then $\langle p(x) \rangle$ is maximal if and only if p(x) is irreducible over F. Hence we may conclude that $R = \mathbb{Q}[x]/\langle f(x) \rangle$ is a field if and only if f(x) is irreducible over \mathbb{Q} .

Since $f(x) = x^3 + 11x^2 + 13x + 1$ has degree three it is reducible if and only if it has a linear factor, that is if and only if f(x) has a root in \mathbb{Q} . A corollary of Gausss Lemma (Corollary 17.15 of Judson) tells us that if f(x) has a root in \mathbb{Q} it must have a root α in \mathbb{Z} , and further, that $\alpha|1$, this would imply that $\alpha = \pm 1$. However $f(1) = 26 \neq 0$ and $f(-1) = -2 \neq 0$, therefore f(x) is irreducible over \mathbb{Q} and $R = \mathbb{Q}[x]/\langle f(x) \rangle$ is a field (and hence an integral domain).