$\underbrace{\text { Theorem (Division Alg.) }} \leqslant \frac{f(x)}{g(x)}$
Let $f(x), g(x) \in F[x]$ where F is a field and $g \neq 0$ \exists unique $q(x), r(x) \in F[x]$ sit.

$$
f(x)=g(x) q(x)+r(x)
$$

Where either $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$.
Proof:

$$
\text { - If } f(x)=0 \text { then } 0=0 \cdot g(x)+0
$$

$$
\therefore \quad q=r=0
$$

Suppose $f(x) \neq 0$ Say $\operatorname{deg}(f(x))=n, \quad \operatorname{deg}(g(x))=m$
If $m>n$ then take $q(x)=0, r(x)=f(x)$
Assume $m \leq n$ do induction on n
Say

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \\
& g(x)=b_{m} x^{m}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

Le t

$$
\hat{f}(x)=f(x)-\frac{a_{n}}{b_{m}} x^{n-m} g(x)
$$

$\operatorname{deg}(\hat{f})<n$ or $\hat{f}=0 \quad\binom{b y$ induction we may assume }{ that quo. and remainder exist }
\therefore by induction $\exists \bar{q}(x), r(x)$ s.t. $\operatorname{dog}^{\uparrow}<\operatorname{deg}(g)$
$\tilde{f}(x)=\tilde{q}(x) g(x)+r(x) \quad$ where either $r=0$ or $\operatorname{deg}(r)<\operatorname{dog}(g)$

Set

$$
\begin{aligned}
& q(x)=\tilde{q}(x)+\frac{a_{n}}{b_{m}} x^{n-m} \\
& =g \cdot \tilde{q}+g \frac{a_{n}}{d_{m}} x^{n-m}+r(x)=\hat{f}+g \frac{a_{n}}{b_{n}} x^{n-m} \\
& f(x)=f(x) q(x)+r(x) \quad=f .
\end{aligned}
$$

Then
we know $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$.
Now show uniqness of q, r
Suppose $\exists q_{1} r_{1}$ st. $f(x)=g(x) q_{1}(x)+r_{1}(x)$
with $\operatorname{deg}\left(r_{1}\left(x_{1}\right) \subset \operatorname{deg}(g(t))\right.$
So then or $r_{1}=0$.

$$
\begin{aligned}
& f(x)=g(x) q(x)+r(x)=g(x) q_{1}(x)+r_{1}(x) \\
& g(x)\left[q(x)-q_{1}(x)\right]=r_{1}(x)-r(x) \\
& g \neq 0 \\
& \operatorname{deg}\left(g(x)\left[q(x)-q_{1}(x)\right]\right)^{2}=\operatorname{deg}(g(x)) \\
& \operatorname{deg}\left(r_{1}(x)-r(x)\right) \geq \operatorname{deg}(g(x))
\end{aligned}
$$

B nt $\operatorname{deg}(r(x))<\operatorname{deg}(g)$ and $\operatorname{deg}\left(r_{1}(x)\right)<\operatorname{deg}(g(x))$
This is a contradiction $\Rightarrow r_{1}(x)=r(x)$
and $q_{1}(x)=q(k)$

Ex) Polynomial Long diursen \leftarrow Division Alg.
Suppose we wont to divide $x^{3}-x^{2}+2 x-3$ by $x-2$

Let $p(x) \in F[x], \alpha \in F$
α a root/zero of $p(\alpha) \Leftrightarrow P(\alpha)=0$

$$
\Leftrightarrow \quad P(\alpha) \in \operatorname{ker}\left(\phi_{\alpha}\right)
$$

Coral Let F be a feild. $\alpha \in F$ is a zero of $p(x) \in F[x]$ if $x-\alpha$ i's a factor of $p(x)$ in $F[x]$.

Proof: First Suppose $\alpha \in F, P(\alpha)=0$
By the div alg $\exists q(x), r(x) \in F[x]$ sit

$$
p(x)=(x-\alpha) q(x)+r(x)
$$

and $\operatorname{deg}(r(x))<\operatorname{dog}(x-\alpha)=1 \quad \Rightarrow \quad r(x)=b \in F$

$$
\begin{aligned}
& \therefore \quad P(x)=(x-\alpha) q(x)+b \\
& \quad 0=p(\alpha)=0 \cdot q(x)+b \Rightarrow b=0 \\
& \therefore \quad p(x)=(x-\alpha) q(x)
\end{aligned}
$$

Suppose $(x-\alpha)$ is a factor of $p(x)$

$$
\begin{aligned}
& \Rightarrow \quad p(x)=(x-\alpha) q(x) \quad \text { for some } q(x) \in F(x) \\
& \Rightarrow \quad p(\alpha)=(\alpha-\alpha) q(x)=0 .
\end{aligned}
$$

Coral Let F be a field. A non-zero poly. $P(x)$ of degree n in $F[x]$ can have at most n distinct zeros in F.

Proof: Do induration on $\operatorname{deg}(P(x)$)
$\left[{ }^{\text {spacial case }}\right.$ If $\operatorname{deg}(p(k))=0 \Rightarrow p(x)=c \in F \therefore$ has no Zeros $\left[\right.$ base $I f{ }^{\text {case }} \operatorname{deg}(P(x))=1 \Rightarrow P(x)=a x+b$ for some $a, b \in F$

Since F is a feild $0=P(\alpha)=a \alpha+b \Rightarrow \alpha-(-b) a^{-1}$
$\therefore \quad P$ has exactly \mid root
Assume $\operatorname{deg}(p(x))>1$. If $p(x)$ has no zeros in F we are done.
Suppose $\alpha \in F$ is i rootof P.
$\Rightarrow \quad P(x)=(x-\alpha) q(x)$ for some $q \in F[x]$
Since Fisc feild $\Rightarrow F$ is a int. deming

$$
\operatorname{deg}(q(x))=n-1
$$

Let $\beta \neq \alpha$ be an other nootof $p(x)$

$$
\begin{gathered}
p(\beta)=(\beta-\alpha) q(\beta)=0 \quad \text {, since } \alpha \pm \beta \text { and } F \text { is } \\
\Rightarrow q(\beta)=0
\end{gathered}
$$

by induction, since $\operatorname{deg}(q)=n-1$
then q has at most $n-1$ roots
$\therefore \quad p$ has at most n roots

Let F be field. A monic polynomial $d(x)$ is a greatest common divisor of $p(x), q(x) \in F[x]$

If $d(x) \mid P(x)$ and $d(x) \mid q(x)$ and if for any other $\tilde{J}(x)$ which divides $p, q \Rightarrow \tilde{d}(x) \mid d(x)$

$$
d(x)=\operatorname{gcd}(p(x), q(x))
$$

- $p(x), q(x)$ ave relibivley prime if $\operatorname{gcd}(p(x), q(x))=1$.

