Polynomial Rings
Let R be a commutive ring with identity 1
Any expression

$$
f(x)=\sum_{i=0}^{n} a_{i} x^{i}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

$a_{i} \in R \quad, a_{n} \neq 0$ is a polynomial with coefficients in R and intermedrate x.
a_{n}-leading coeficant
$a_{n} x^{n}$ - leading term
manic if $a_{n}=1$
If n is the largest ron-negitive sit

$$
a_{n} \neq 0 \Rightarrow \operatorname{deg}(f)=n
$$

$\uparrow_{\text {degree }}$
If no such nexists $\Rightarrow f=0$

$$
\begin{aligned}
\operatorname{deg}(0) & =-\infty \\
a_{0}+a_{1} x+\cdots+a_{n} x^{n} & =b_{0}+b_{1} x+\cdots+b_{m} x^{m} \\
\text { if } \quad a_{i} & =b_{i} \quad \forall i
\end{aligned}
$$

$R[x]=\{$ sot of Pclyn nomials in x with coefeconts in R $\}$

To show $R[x]$ is a ring define

- Add.

$$
\begin{aligned}
& \begin{array}{c}
p(x) \\
{ }^{\prime}
\end{array} \\
&\left(a_{0}+a_{1}+a_{n} x^{n}\right)+\left(b_{0}+b_{1} x+\cdots+\right.\left.b_{m} \times m\right) \\
&\left(s_{n}+n \geqslant m\right. \\
&=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n}+b_{n}\right) x^{n}
\end{aligned}
$$

mull.

$$
P(x) q(x)=\sum_{i=0}^{m+n}\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right) x^{i}
$$

(Some $a_{j}, b_{j}=0$ perhaps)
Ex] work $\mathbb{Z}_{12}[x]$

$$
\begin{aligned}
& p(x)=3+3 x^{3}, \quad q(x)=4+4 x^{2}+4 x^{4} \\
& p(x)+q(x)=7+4 x^{2}+3 x^{3}+4 x^{4} \\
& p(x) q(x)=0
\end{aligned}
$$

t ave zero dinsors
Theorem Let R be a comm. ring with identity y. Then $R[x]$ is a comm. ring with identity.
Proof:
Show $R[x]$ is a n a belian 9 roup with add.

$$
\text { - } f(x)=0
$$

- Addinuese of $p(x)=\sum a_{i} x^{i}$ is $-p(x)=\sum\left(-a_{i}\right) x^{i}$
show mull is associtue

$$
\begin{array}{rl}
P(x)=\sum_{i=0}^{m} a_{i} x^{i} & q(x)=\sum_{i=0}^{n} b_{i} x^{i}, r(x)=\sum_{i=0}^{v} c_{i} x^{i} \\
(p(x) \cdot q(x)) \cdot r(x)= & \left.\left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left(\sum_{i=0}^{n} b_{i} x^{i}\right)\right]\left(\sum_{i=0}^{v} c_{i} x^{i}\right) \\
= & {\left[\sum_{i=0}^{m+n}\left(\sum_{j=0}^{i} a_{j} b_{i-j}\right) x^{i}\right] \cdot\left(\sum_{i=0}^{v} c_{i} x^{i}\right)} \\
= & \sum_{i=0}^{m+n+r}\left(\sum_{j=0}^{i}\left[\sum_{k=0}^{j} a_{k} b_{j-k}\right] c_{i-j}\right) x^{i} \\
= & \sum_{i=0}^{m+n+r}\left(\sum_{j+k+l=i} a_{j} b_{k} c_{l}\right) x^{i} \\
= & \sum_{i=0}^{m+n+r}\left[\sum_{j=0}^{i} a_{j} \sum_{k=0}^{i-j} b_{k} c_{i-j-k}\right] x^{i} \\
= & \left(\sum_{i=0}^{m} a_{i} x^{i}\right)\left[\sum_{i=0}^{n+r}\left(\sum_{j=0}^{i} b_{j} c_{i-j}\right) x^{i}\right] \\
& =P(x) \cdot\left[\left(\sum b_{i} x^{i}\right) \cdot\left(\sum c_{i} x^{i}\right)\right] \\
& =P(x)[q(x) \cdot r(x)] .
\end{array}
$$

Prop Let $p(x), q(x) \in R[x]$ where R is an intrymil domain. Then $\operatorname{deg}(p(x) q(x))=\operatorname{deg}(p(x))+\operatorname{deg}(q(x))$. and $R[x]$ is an integral Domain.

Proof: Let $p, q \in R[x], p \neq 0, q \neq 0$

$$
\begin{aligned}
p & =a_{n} x^{m}+\cdots+a_{1} x+a_{0} \\
q & =b_{n} x^{n}+\cdots+b_{1} x+b_{0} \\
\operatorname{deg}(p) & =m, \operatorname{deg}(q)
\end{aligned}
$$

Lead term of $p(x) q(x)=a_{m} b_{n} x^{m+n}$ since $a_{n} \neq 0$ and $b_{n} \neq 0$ and R is an integral Domain $\Rightarrow a_{m} b_{n} \neq 0$

$$
\therefore \quad \operatorname{deg}(p-q)=m+n
$$

$p(x) q(x) \neq 0 \quad$ (whenwere p and q are non zero)
$\therefore R[x]$ is an integral Domain

Multivarian + poly nomial Rings

$$
\text { i.e. } \quad x^{2}-3 x y+2 y^{3}
$$

- $R[x]$ is a commative ring with 1

$$
\begin{aligned}
\therefore \quad & (R[x])[y] \quad \text { is apical } a \text { comm. ring with } 1, \text { so } 15 \\
& (R[y])[x]=\text { typp-cal element } \quad a_{n}(y) x^{n}+a_{n-1}(y) x^{n-1}+\cdots+a_{1}(y) x+a_{0}(f)
\end{aligned}
$$

Show $(R[x])[y] \simeq(R[y])[x]$

$$
\backslash \underset{R[x, y]}{ }
$$

corr $R\left[x_{1}, \ldots, x_{n}\right]$ is a conative ring with 1.

Thu Let R be a commutive ring with I. Let $\alpha \in R$
Let $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$
$\phi_{\alpha}: R[x] \longrightarrow R$ defined $b ;$

$$
Q_{\alpha}(p(x))=p(\alpha)=a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0}
$$

is a ring ham. We call ϕ_{α} the evaluation hem.
Proof i

$$
P(x)=\sum a_{i x i}, q(k)=\sum b_{i} x^{i}
$$

$$
\begin{aligned}
\phi_{\alpha}(p(x)+q(x))=(p+q)(\alpha)= & \sum\left(a_{i}+b_{i}\right) \alpha^{i}=p(\lambda)+q(\alpha)=\phi_{\alpha}(p)+\phi_{\alpha}(q) \\
& =\sum a_{i} \alpha^{i}+\sum b_{i} \alpha^{i} / \\
\phi_{\alpha}(p(x)) \phi_{\alpha}(q(x))= & p(\alpha) q^{\prime}(\alpha) \\
= & \left(\sum_{r=0}^{n} a_{i} \alpha^{i}\right)\left(\sum_{r=0}^{m} b_{i} \alpha^{i}\right) \\
= & \sum_{i=0}^{m i n}\left(\sum a_{k} b_{r-k}\right) \alpha^{i} \\
& =p \cdot q(\alpha) \\
& =\phi_{\alpha}(p(x) q(x))
\end{aligned}
$$

