$$\frac{\Pr position}{\text{The Kernel of any ring homomorphism}} \\ \varphi: R \rightarrow S \quad is an ideal in R (i.e. Kerce) is aridaling). \\ \frac{\Pr of \cdot}{\text{Subgroup of R}} \quad \text{From groups we know the kerd is adducted} \\ \quad Subgroup of R \\ Let veR, a \in ker(d) \quad show are ker(d) and ra \in ker(d) \\ \quad 0^{\text{Sine affer(H)}} \\ \varphi(ar) = \varphi(a) \cdot \varphi(r) = 0 \cdot \varphi(r) = 0 \quad :. are kerd \\ \varphi(ra) = \varphi(r) \varphi(d)^{0} = \varphi(r) \cdot \delta = 0 \quad :. ra \in kerd \\ \quad R/I = Quotient Ring for R aving \\ \quad The Facker R/I is a ring with multiplication given by (r+I)(s+I) = rs + I . \\ \\ [we already three R/I is an abelian group] \\ \quad while radding (r+I) + (sT) = (ns) \cdot T] \\ \hline Preaf: \\ Let s+T, r+I \in R/I \quad Show risherst The multiplication given is an ideal of rs = 1 \\ \\ \hline reads risk of risk or risk or states is an ideal of rs = 1 \\ \\ \hline risk of risk or states or risk or risk$$

$$r's' = (r+a)(s+a) = rs+as+rb+ab$$

 $r's' \in rs+I$

$$\frac{Drs+ributivity}{Swy} = swy + I , s+I , w+I \in R/I$$

$$Show (r+I) ((s+I) + (w+I)) = (r+I) ((s+w)+I)$$

$$= r(s+w) + I$$

$$= rs + rw + I$$

$$= (rs+I) + (rw + I)$$

$$= (r+I)(s+I) + (r+I)(w+I).$$
Associtivity similar

_

The over
Let I be an ideal of R. The map
$$\Psi: R \rightarrow R/I$$

defined by $\Psi(r) = r+I$ is a ring homomorphism
of R onto R/I and ker $(0) = I$.
Proof:
From Groups we know
 $\Psi: R \rightarrow R/I$ is a surgective group hom.
Show Ψ is a ring hom. Let $r, s \in R$
 $\Psi(r) \Psi(s) = (r+I)(srI) = rs+I = \Psi(rs)$
 $\Psi: R \rightarrow R/I$ is called the nubural/convencent Ring hom.

Theorem (First in Theorem for rings)
Let
$$\phi: R \rightarrow S$$
 be a ring homorphism. Let $\Psi: R \rightarrow R/ker(\phi)$
be the connect hom. Hen there exists a unique iso merphone
 $\mathcal{N}: R/ker\phi \rightarrow \phi(R)$ s.t. $\phi = \mathcal{R}\circ\Psi$
In purficultion $\phi(R) \cong R/ker(\phi)$
 $R \longrightarrow S$
 $\mathcal{I} = R/ker(\phi)$
 $R \longrightarrow S$
 $\mathcal{I} = R/ker(\phi)$
 $\mathcal{I} = R/k \longrightarrow \phi(R)$
 $R/K, R, S$
we need to show this extends to a ring hom.
 $\mathcal{R} = (rs)$
 $= \phi(rs)$
 $= \pi(r+k) \mathcal{R}(s+k)$
 $: \mathcal{R} = rise ring hom. extends is unique : we end here $\mathcal{I}$$

Theorem (Second Iso. Theorem)
Let I be a subving of a ving R and J to be an ideal of
R. Then INJ is an ideal of I and

$$I/(INJ) \ge (I+J)/J$$

 $I/(INJ) \ge (I+J)/J$

Proof:

•
$$I + J$$
 is a subring of R .
we know $I + J$ is an aboban subgroup.
Let $a_i a' \in T$, $b_i b' \in J$
 $(a+b)(a'+b') = aa' + ba' + ab' + bb'$
 $\in I + J$

• Show J is an ideal of I+J CEJ
Let a e I, be J for any a the E I+J show
$$(a+b)c \in J$$

 $(a+b)c = ac + bc$
 $c(a+b) = ca + cb$
 $c(a+b) = ca + cb$
 \therefore J is an ideal of I+J.
Now define $\phi: I \longrightarrow (I+J)/J$
 $a \longmapsto a+J$ (ae I)
Show ϕ is a hom. cf rings. Let $a_1a_2 \in I$

$$\begin{split} \varphi(a_1 + a_2) &= a_1 + a_2 + J = (a_1 + J) + (a_2 + J) \\ &= \varphi(a_1) + \varphi(a_2) \\ \varphi(a_1 a_2) &= (a_1 a_2 + J) = (a_1 + J)(a_2 + J) \\ &= \varphi(a_1) \varphi(a_2) \\ (\text{ well defined follows since } \Psi: R \longrightarrow R/J \quad 13 \text{ well defined }) \end{split}$$