Proposition
The kernel of any ming homomorphism
$\phi: R \rightarrow S$ is an ideal in R (ie. Kev(d) is anidealion R).
proof.
From groups we know the ken ϕ is addivitre Subgroup of R
Let $r \in R, \quad a \in \operatorname{Ker}(\phi)$ show $\operatorname{ar} \in \operatorname{ker}(\phi)$ and $r a \in \operatorname{ker}(\phi)$

$$
\begin{aligned}
& \phi(a r)=\phi(a) \cdot \phi(r)=0 \cdot \phi(r)=0 \quad \therefore \quad a r \in \operatorname{ker} \phi \\
& \phi(r a)=\phi(r) \phi(a)^{0}=\phi(r) \cdot \sigma=0 \quad \therefore r a \in \text { kerb } \phi .
\end{aligned}
$$

$R / I=$ Quotient Ring for R aping,
Theorem: Let I be an ideal of R^{I}
The factor R / I is a ring with multiplication given by

$$
(r+I)(s+I)=r s+I .
$$

$\left[\begin{array}{cc}\text { We al read }+ \text { know } R / I \text { is an abelson group } \\ \text { under addition } \\ \text { sines an ideal } I \text { is a to a }+(s+I)=(n+5)+I\end{array}\right]$
Proof:
Let $s+I, r+I \in R / I \quad s$ how that the malt. is well defined Let $r^{\prime} \in r+I \quad s^{\prime} \in S+I$ Shan $r^{\prime} s^{\prime} \in r s+I$

$$
\begin{array}{lll}
r^{\prime} \in r+I \Rightarrow \exists a \in I & \text { set } & r^{\prime}=r+a \\
s^{\prime} \in s+I \Rightarrow \exists b \in I & \text { set } & s^{\prime}=s+b
\end{array}
$$

$$
\begin{aligned}
& r^{\prime} s^{\prime}=(r+a)(s+a) r s+a s+r b+a b \\
& r^{\prime} s^{\prime} \in r s+I
\end{aligned}
$$

Distributivity say $r+I, s+I, w+I \in R / I$
Shan

$$
\begin{aligned}
(r+I)((s+I)+(w+I)) & =(r+I)((s+w)+I) \\
& =r(s+w)+I \\
& =r s+r w+I \\
& =(r s+I)+(r w+I) \\
& =(r+I)(s+I)+(r+I)(w+I)
\end{aligned}
$$

Assocatavitg similar

The over
Let I be an ideal of R. The map $\psi: R \rightarrow R / I$ defined by $\psi(r)=r+I$ is a ring homomorphism of R onto R / I and $\operatorname{ker}(\theta)=I$.

Proof: From Groups we know
$\psi: R \rightarrow R / I$ is a surgective grouphom.
Show ψ its a ring home . Let $r, s \in R$

$$
\psi(r) \psi(s)=(r+I)(s+I)=r s+I=\psi(r s)
$$

$\psi: R \rightarrow R / I$ is called the nataral/canonical Ring tom.

Theorem (First iso. Theorem for rings)
Let $\phi: R \rightarrow S$ be a ring homorphism. Let $\psi: R \rightarrow R / \operatorname{ker}(\phi)$ be the canonical ham. then there exists a unique isomorphom

$$
n: R / \operatorname{ker} \phi \longrightarrow \phi(R) \quad \text { s.t. } \phi=n \circ \psi
$$

In particular

$$
\phi(R) \simeq R / \operatorname{ker}(\phi)
$$

$\phi(R)$ is a suturing of S.

Sit Diagram commutes.

Proof: Let $k=\operatorname{ker} \phi$, By the $1^{\text {st }}$ iso. thereon fer Groups 7 a unique (wall defined) group nom.

$$
\begin{aligned}
n: R / k & \longrightarrow \phi(R) \\
r+k & \mapsto \phi(r)
\end{aligned} \quad\binom{\text { fer add. groups }}{R / K, R, s}
$$

we need to show this extends to a ring ham.

$$
\begin{aligned}
n((r+k)(s+k)) & =n(r s+k) \\
& =\phi(r s) \\
& =\phi(r) \phi(s) \\
& =n(r+k) n(s+k)
\end{aligned}
$$

$\therefore n$ is a ring home. and is unique \therefore we ard dore

Theorem (Second Iso. Thecveon)
Let I be a subbing of a ring R and J to be an ideal of
R. Then $I \cap J$ is an ideal of I and

Proof:

- $I+J$ is a subbing of R.
we know $I+J$ is an abolian subgroup.
Let $a, a^{\prime} \in I, b, b^{\prime} \in J$
$\in J$ since $J i s$ an ideal

$$
(a+b)\left(a^{\prime}+b^{\prime}\right)=\underbrace{a^{\prime} a^{\prime}}_{\in I+J}+\overbrace{b a^{\prime}+a b^{\prime}}+b b^{\prime}
$$

- Snow J is an ideal of $I+J \quad c \in J$

Lot $a \in I, b \in J$ for any $a+b \in I+J$ show $(a+b) c \in J$

$$
\begin{array}{ll}
(a+b) c=a c J \in J & c(a+b) \in J \\
c(a+b)=c a+c b &
\end{array}
$$

$\therefore J$ is an ideal of $I+J$.
Now define $\quad \phi: I \longrightarrow(I+J) / J$

$$
a \longmapsto a+J \quad(a \in I)
$$

show ϕ is a hon. of rings. Let $a_{1}, a_{2} \in I$

$$
\begin{aligned}
\phi\left(a_{1}+a_{2}\right)=a_{1}+a_{2}+J & =\left(a_{1}+J\right)+\left(a_{2}+J\right) \\
& =\phi\left(a_{1}\right)+\phi\left(a_{2}\right) \\
\phi\left(a_{1} a_{2}\right)=\left(a_{1} a_{2}+J\right)= & \left(a_{1}+J\right)\left(a_{2}+J\right) \\
& =\phi\left(a_{1}\right) \phi\left(a_{2}\right)
\end{aligned}
$$

(well defined follows since $\Psi: R \longrightarrow R / J$ is well defined)
ϕ is onto since $\forall a \in I, b \in J$

$$
\begin{aligned}
& \in(F+J) / J \\
& a+b+J \\
& =a+J=\phi(a) \\
& \operatorname{kev}(p)=\{a \in I \mid \phi(a)=c+J\} \\
& =\{a \in \pm \mid a \in J\} \\
& =I \cap J \quad \therefore \quad I \cap J \text { is an ital }
\end{aligned}
$$

$\therefore \phi: I \rightarrow(I+J) / J$ is an onto ronghom.

$$
\begin{aligned}
& \phi(I) \simeq I / \operatorname{ker}(\phi)=I /(I \cap J) \\
& \| \\
& (I+J) / J=
\end{aligned}
$$

