The Alternating Group: (on n letters)
\downarrow
$A_{n}=$ set of all even permutations in S_{n}

Theorem 5.16 The set A_{n} is a subgroup of S_{n}.
Proof:

- Product of two even perputation is even : A_{n} is clod
- Id is even (Theorem from friday) \therefore id $\in A_{n}$
- If σ is even $\sigma=\sigma_{1} \cdots \sigma_{r}$ for riven

$$
\begin{aligned}
\left(\sigma_{1} \cdots \sigma_{r}\right)^{-1} & =\sigma_{r}^{-1} \cdots \sigma_{1}^{-1}=\sigma_{r} \cdots \sigma_{1} \\
& \therefore \sigma^{-1} \in A_{n} .
\end{aligned}
$$

Proposition 5.17
For $n \geq 2$ the number of even permutation is equal to the number of odd permutations $\Rightarrow\left|A_{n}\right|=\frac{n!}{2}$
Proof:
A_{n} - even perm
β_{n} - odd perm
Show \exists a bijection between A_{n} and B_{n}
Fix arbitral y transposition $\sigma \in S_{n} \quad$ (\exists since $n \geq 2$)
Define a map $\lambda_{\sigma}: A_{n} \rightarrow B_{n}$

$$
: \tau \mapsto \sigma \cdot \tau
$$

1-1: Suppose $\lambda_{\sigma}(\tau)=\lambda_{\sigma}(\mu) \quad$ for $\tau, \mu \in A_{n}$ than

$$
\begin{aligned}
& \sigma \tau=\sigma \mu \\
& \tau=\sigma^{-1} \sigma \tau=\sigma^{-1} \sigma \mu=\mu \\
& \\
& \therefore \tau=\mu . \\
& \therefore \quad \lambda \sigma \text { is } 1-1
\end{aligned}
$$

onto: Pick arbitral $\alpha \in B_{n}$ shew $\exists \tau \in A_{n}$ sit $\lambda_{\sigma}(\tau)=\alpha$
consider $\tau=\sigma \alpha$, since α is odd $\therefore \tau$ issuer and

$$
\lambda_{\sigma}(\tau)=\sigma \cdot \sigma \cdot \alpha=\alpha
$$

Example 5.18. The group A_{4} is the subgroup of S_{4} consisting of even permutations. There are twelve elements in A_{4} :

(1)	$(12)(34)$	$(13)(24)$	$(14)(23)$
(123)	(132)	(124)	(142)
(134)	(143)	(234)	(243).

Dihedral Groups - Subgroups of S_{n} nth $_{\text {th }}^{\text {regular }} \quad n$ graiperal group
n-gan

Figure 5.19: A regular n-go

- Notree we have n chores for the first vertex
- If we replace 1 by k then 2 must be eirthe $k+1$ or $k-1$
- $2 n$ possible rigid motions
(n reflections and n rotations)

Theorem 5.20)
The dihedral group, D_{n}, is as ubgroup of S_{n} of order $2 n$

Figure 5.21: Rotations and reflections of a regular n-mon

Figure 5.22: Types of reflections of a regular n-gon
Theorem 5.231
The group $D n, n \geq 3$ consists of all products of two elements rand S satisfying the relations

$$
\begin{aligned}
& r^{n}=-(\text { rotations }) \\
& s^{2}=1 \\
& s \text { se }=r^{-1}
\end{aligned}
$$

Proof: The are exactly n - rotations

$$
\text { id, } \frac{2 \pi}{n}, 2 \cdot \frac{2 \pi}{n}, \ldots,(n-1) \frac{2 \pi}{2}
$$

$r=\frac{2 \pi}{n}$ this generates all other rotations

$$
\text { i.e. } \quad r^{k}=k \cdot \frac{2 \pi}{n}
$$

$\left.\begin{array}{c}\text { (think of roots of } \\ \text { unity }\end{array}\right)$

Le bel n reflections S_{1}, \ldots, S_{n} where S_{k} leaves the $k^{\text {th }}$ vertex fixed. Two cases

Even H vertices

- Two vertices fixed by such a reflection

Odd 1 vertices

- one vertex fixed

$$
\left|S_{K}\right|=2
$$

$s=s_{1}$, Than $s^{2}=i d, \quad r^{n}=i d$
conside the first vertex of an n-gan:
Any rig id motion replace l by k
then 2 becomes either $k+1$ or $K-1$
if $2 \rightarrow k+1$ then

$$
t=r^{k-1}
$$

Ff 2 is replaced by $k-1$ then

$$
\lambda_{n}^{1} \stackrel{r}{-1}_{n}^{r_{1}^{\prime-1}}{ }_{1}^{n}
$$

$$
\begin{aligned}
& \text { Shaw } r^{-1}=\text { sos } \\
& \text { sirs } \left.=\text { First } l^{\prime}>2 \xrightarrow{s} /_{2}^{1}\right\rangle\left.\left._{n} \xrightarrow{r}\right|_{1} ^{n} \backslash{ }_{n-1}^{s}\right|_{n-1} ^{n} _{1}^{n-1}
\end{aligned}
$$

Example D_{4} rigid motions of a square

Figure 5.25: The group D_{4}
rotations

$$
\begin{aligned}
& r=(1234) \\
& r^{2}=(13)(24) \\
& r^{3}=(1432) \\
& r^{4}=(1)
\end{aligned}
$$

Reflections

$$
\begin{aligned}
& s_{1}=(24) \\
& s_{2}=(13)
\end{aligned}
$$

the other two reflections

$$
\begin{aligned}
& r s_{1}=(12)(34) \\
& r^{3} s_{1}=(14)(23)-\text { reflection in "Y" } 9 x_{1} \text { 's }
\end{aligned}
$$

