The Multiplicitive Group of Complex Numbers

$$
\begin{aligned}
& \mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\} \quad \mathbb{Q}^{v}=\mathbb{C} \backslash\{0\} \\
& i^{2}=-1 \\
& z=a+b i, w=c+d i \\
& z+w=(a+c)+(d+b) i \\
& z \cdot w=(a c-d b)+(a d+b c) i \\
& z \neq 0 \\
& z^{-1}=\frac{a-b i}{a^{2}+b^{2}} \\
& |z|=\sqrt{a^{2}+b^{2}}=\text { modular or abs. Value }
\end{aligned}
$$

ε (artesian lords , polar cords

$$
z=a+i b \quad z=r(\cos \theta+i \sin \theta)
$$

$$
\begin{array}{ll}
Z=r \cdot e^{i \theta}=r(\cos \theta+i \sin \theta) & \text { we restrict } \\
& 0 \leq \theta<2 \pi
\end{array}
$$

mag show that

$$
\begin{aligned}
& z=r e^{i \theta}, w=s e^{i \phi} \\
& z \cdot w=r s e^{i(\theta+\phi)}
\end{aligned}
$$

Theorem (De more)

$$
z=r e^{i \theta} \text { then } z^{n}=\left(r e^{i \theta}\right)^{n}=r^{n} e^{i n \theta} \quad \text { for } n=1,3, \ldots
$$

Proof: Induction + Euler formula + trigidatits.
\mathbb{C}^{*} has cool subgroups of finite order $\left(\begin{array}{l}\mathbb{R}^{*}, \mathbb{Q}^{+} \\ \text {he de Not Not } \\ \text { of frnivioups } \\ \text { of er }\end{array}\right)$

$$
\pi=\{z \in \mathbb{C}| | z|=|\}^{K} \text { The circle group }|z|=a^{2}+b^{2}=1
$$

To show π is a sub group:

$$
\begin{aligned}
|z|=1 \Leftrightarrow \quad & z=e^{i \theta} \\
& \cdot i d \Theta \theta=0 \\
& \cdot \text { closed } e^{i \theta} e^{i \phi}=e^{i(\theta+\phi)} \\
& \cdot \text { inverse } e^{-i \theta}
\end{aligned}
$$

- Circle group has infinte or der
$H=\{1,-1, i,-i\}$ is a cyclic subgroup of the circle group

$z^{4}=1$ gives elements of H
The complex solutions of $\exists^{n}=1$ are called the
$n^{\text {th }}$ roots of unity.
Theorem: If $Z^{n}=1$ then the $n^{\text {th }}$ roots of unit y are

$$
z=e^{\frac{2 k \pi}{n} i} \quad, \quad k=0,1, \ldots, n-1
$$

Furthermore the $n^{\text {th }}$ rests of unity form a cyclic subgroup of π having order n.
Prot oururew

$$
\begin{aligned}
z^{n}=\left(e^{\frac{2 k \pi}{n} i}\right)^{n}=e^{2 k \pi i} & =\cos (2 \pi k)+i \sin (2 \pi k) \\
& =1 \quad \forall k
\end{aligned}
$$

- $\frac{2 k \pi}{n}$ are dis tinct in $[0,2 \pi) \therefore n$ roots
- By the fundemental Theorem of Algebra (cor. 17.9) \exists at most n roots.
- These are all of the roots. and $|z|=1 \therefore$ we have all n roots of unity
- I is a root of unity, check inverses....

Ageresator of the $n^{\text {th }}$ roots of unity a primitive $n^{\text {th }}$ root.

$$
z=e^{\frac{2 k \pi}{n} i}
$$

Ex 1 Consider the $8^{\text {th }}$ roots cf unity, $z^{8}=1$

$$
w=e^{\frac{2 \pi}{8} i^{k=1}}=e^{\frac{\pi}{4} i}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i
$$

$8^{\text {th }}$ roots of unity $=\langle\omega\rangle=\left\langle\omega^{3}\right\rangle=\left\langle\omega^{5}\right\rangle=\left\langle\omega^{7}\right\rangle$

Figure 4.27: 8th roots of unity

Permutation Groups

- The permutions of a sot x form a group S_{x}
- If x is finite we may take $x=\{1,2, \ldots, n\}$ and write S_{n}
- S_{n} is called the symmetric group on n letters.

Therovem 5.1/ The symmetric groups on n letters, S_{n}, is a group with n ! elements where the binary op. is composition of maps.
Proof:

- identity is

$$
\left(\begin{array}{llll}
1 & 2 & \ldots & n \\
1 & 2 & & n
\end{array}\right) \leftrightarrow 1 \mapsto 1,2 \mapsto 2, \ldots, n \nrightarrow n
$$

- If $f: S_{n} \rightarrow s_{n}$ is a permutation \Rightarrow fir bigactive
$\therefore f^{-1}$ exists and is bi jective $\therefore f^{-1}: S_{n} \rightarrow s_{n}$
- composition of maps is associative
- $\left|S_{n}\right|=n$! is a Question int tr book.

A subgroup of s_{n} is called a permutation group
Note: we will use the convention of multiplying promatations right to left

$$
\sigma \tau \Rightarrow \text { do } \tau \text { first then do } \sigma
$$

Since

$$
\sigma \tau(x)=\sigma \circ \tau(x)=\sigma(\tau(x))
$$

$-\sigma \tau \neq \tau \sigma$ mostly.

