Than
$F[x]$ is a Principal ideal domain

Ex) $F[x, y]$ is Not a PID
consider

$$
I=\langle x, y\rangle_{\operatorname{m}} F[x, y]
$$

$\langle x, y\rangle=$ all poly in $F[x, y]$ with no constant terms $x \in I, \quad y \in I$ but \exists no

$$
\begin{aligned}
f(x, y) \text { s.t. } x & =f(x, y) \cdot y \text { or } \\
y & =f(x, y) \cdot x \\
\therefore & {[x, y\rangle \neq\langle f(x, y)\rangle \quad \text { a } }
\end{aligned}
$$

Tho Let F be a fold and suppose $P(x) \in F[x]$ $I=\langle p(x)\rangle$ is maximal if and only if $p(x)$ is irreduable.

Proof
Suppose $I=\langle p(x)\rangle$ is maximal $\Rightarrow I$ is a prime ideal and a max ital ideal is proper

$$
\therefore \quad p(x) \neq 0
$$

$$
\begin{array}{r}
\text { Suppose } p(x)=f(x) g(x), \\
\operatorname{deg}(f)<\operatorname{deg}(p) \\
\operatorname{deg}(g)<\operatorname{deg}(p)
\end{array}
$$

$I=\langle P(x)\rangle$ is prime and $P(x) \in I \Rightarrow f(x) g(x) \in I$
$\therefore \quad$ either $f(x) \in I$ or $g(x) \in I$.
Say its $f \Rightarrow f(x)=p(x) q(x) \Rightarrow \operatorname{deg}(f) \geq \operatorname{deg}(p)$ but this is a contradiction $\therefore \quad P(x)$ is irreduable

- Suppose $P(x)$ irs. over $F[x]$.

Say

$$
\langle p(x)\rangle \leqslant I \leqslant F[x]
$$

I is a principal ideal since its on ideal of $F[x]$
$\therefore \quad I=\langle f(s)\rangle$ for some $f(x) \in F[x]$
$p(x)=f(x) g(x)$ for somme $g \in F[+]$
But $p(x)$ is inge bucible $\Rightarrow f(x)=c \in F$ or $g(x)=c \in F$

$$
\text { - if } f(x)=c \Rightarrow I=\langle 1\rangle=F[x]
$$

- If $g(x)=c \Rightarrow I=\langle p(x)\rangle=\langle f(x)\rangle$

$$
\frac{11}{\frac{1}{c} P(6)}
$$

Ex $\$ 38 \mathrm{ch} 16$
Idendpilent $\Leftrightarrow x^{2}=x \quad$ in R
If R is a_{n} int de main $\Rightarrow x=91$ are onlyones:
$y=0$ or $x-x=x$
$x=1$ if R is int. domain.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Ex) Find all ring ham $Q: \underline{\mathbb{Z}} \rightarrow \mathbb{\mathbb { L }}$.
Ans: $\quad \phi(n)=0$
or $\phi(n)=n$
Reuben: $\quad \phi(1)=\phi(1.1)=\phi(1) \phi(1)$

$$
\phi(1)=\phi(1)^{2} \Rightarrow \phi(1)=0 \text { or } 1
$$

$$
\begin{aligned}
\phi(n)=\phi(1+\cdots+1) & \left.=\phi(1)+\cdots+\begin{array}{c}
n \text { times } \\
n \text { tines } \\
\end{array}\right) \\
& =0 \text { or } n
\end{aligned}
$$

Ex Consider $f(x)=x^{4}-15$

- If f irs. in $Q[x]$? sot $\alpha=(15)^{\frac{1}{4}}$

Roots of $f(x)=0$ are $\pm \alpha, \pm i \alpha$
\therefore no national linear factors
Suppose

$$
x^{4}-15=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)
$$

$$
\begin{aligned}
& b d=-15 \\
& \left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)=x^{4}+(a+c) x^{3}+(b+d+a c) x^{2}+(b c+a d) x \\
& a=-c \\
& b+d+a c=0 \\
& b+d-a^{2}=0 \\
& b c+a d=0 \quad \Rightarrow \quad-a b+a d=0 \\
& b_{d}=-15 \\
& a(d-b)=0
\end{aligned}
$$

Either $a=0 \Rightarrow c=0$

$$
\begin{aligned}
x^{4}-15 & =\left(x^{2}+b\right)\left(x^{2}+d\right) \quad \text { but } \quad b=-d \quad(\operatorname{since} a=0) \\
& =\left(x^{2}-b\right)\left(x^{2}+b\right) \\
& \Rightarrow b^{2}=15 \\
& \Rightarrow b=\sqrt{12} \& Q
\end{aligned}
$$

$\therefore a \neq 0 \quad \Rightarrow b=d \quad$ and $\quad b d=-15$

$$
\begin{aligned}
\Rightarrow b^{2} & =-15 \\
& \Rightarrow b \notin Q
\end{aligned}
$$

