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ABSTRACT 

Motion planning and optimal control form substantial endeavors across theoretical and practical aspects 

of research and development in inverse kinematics. Both are hindered by singularities, i.e., those regions of 

configuration space where the mechanism at hand loses at least one degree of freedom. Equivalently, 

singularities are those regions where the derivative of the kinematic map fails to attain full rank. The prevailing 

wisdom in kinematics research is that such singularities should be quickly identified and steadfastly avoided.   

Here we suggest a fundamentally different approach: a deeper geometric and topological understanding 

of singularities will be enormously beneficial to inverse kinematics. The ability to efficiently probe the fibers of a 

kinematic map at (or even near) a singularity allows us to properly catalog safe directions as well as prohibited 

ones in the configuration space. The knowledge of such directions will, in turn, facilitate far more efficient 

solutions to standard motion planning problems by removing superfluous constraints: we could safely pass 

through singularities rather than forcing ourselves to bypass them. 

For a wide and practically relevant class of kinematic maps, we aim to algorithmically decompose the 

configuration and state spaces into sub-manifolds so that the kinematic map in question (a) sends sub-manifold 

to sub-manifold, and (b) has a constant rank derivative when restricted to each sub-manifold. This stratification 

serves as an essential starting point for a thorough analysis of various kinematic singularities, their computable 

invariants, and hence, of their mechanical passability. 
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INTRODUCTION 

The kinematic map associated to a robot is a function 𝑓: 𝐶 → 𝑆 where 𝐶 and 𝑆 denote the input 

configuration space and the output state space of that robot respectively. The motion planning problem [1] 

amounts to finding an optimal path of the form 𝛾: [0,1] → 𝐶 interpolating from the initial state 𝑓 ∘ 𝛾(0) to some 

desired target state 𝑓 ∘ 𝛾(1). It is standard practice to assume that both 𝐶 and 𝑆 are smooth sub-manifolds of 

Euclidean space and that 𝑓 is a smooth mapping between them. The key 

advantage of imposing smoothness is that well-known tools from differential 

calculus and linear algebra may be brought to bear on the vital task of finding 

optimal trajectories in configuration space which achieve desired target states.  

THE CHALLENGE: Even when 𝑓, 𝐶 and 𝑆 are all smooth, the 

mapping 𝑓 may still admit intricate singularities as follows. Writing 𝑚 and 𝑛 to 

denote the dimensions of 𝐶 and 𝑆 respectively, the singular locus of 𝑓 is the 

subset Σ𝑓 ⊂ 𝐶 consisting of all those points 𝑝 where the derivative 𝑑𝑓𝑝: 𝑇𝑝𝐶 → 𝑇𝑓(𝑝)𝑆 between tangent spaces, 

which is represented by an 𝑛 × 𝑚 Jacobian matrix of partial derivatives evaluated at 𝑝, has rank strictly smaller 

than min(𝑚, 𝑛). These singularities are generic in the sense that Σ𝑓 is non-empty for any reasonably complicated 

𝑓. Much of the traditional differential calculus toolbox fails at Σ𝑓-points, since iterative optimization schemes 

such as gradient descent require 𝑑𝑓𝑝 to admit at least a one-sided inverse whenever 𝑝 lies along a gradient-

minimizing trajectory.   

The typical remedy involves imposing Σ𝑓-avoidance as an additional constraint when solving for optimal 

paths. This is often ensured in practice by over-actuation, i.e., by concocting higher-dimensional configuration 

spaces to enforce 𝑚 ≫ 𝑛. One then hopes to find enough redundancy in the fiber 𝑓−1(𝑞) ⊂ 𝐶 of a given state 

𝑞 ∈ 𝑆 that any singularities in sight may be bypassed via a null move, i.e., a path lying entirely within this fiber 

[2]. There are two unfortunate by-products of this strategy. First, higher-dimensional configuration spaces 

naturally incur much higher computational costs from an algorithmic perspective. Second, and far more serious, 

is the fact that not all singularities are created equal. While some are indeed unsafe, others can be effortlessly 

traversed in certain directions. Thus, forcing an optimizer to avoid Σ𝑓 entirely might overlook genuinely optimal 

and mechanically safe paths.  

OUR MOTIVATION: We seek to improve on this state of affairs by constructing a toolbox for 

thorough local and global analysis of the singular locus Σ𝑓 whenever the kinematic map 𝑓 is given in terms of 

polynomial or trigonometric polynomial equations. The first step is to algorithmically decompose Σ𝑓 ⊂ 𝐶 and its 

image 𝑓(Σ𝑓) ⊂ 𝑆 into manifold pieces, of possibly different dimensions, so that the restriction of 𝑓 to each sub-

manifold 𝑀 ⊂ Σ𝑓 maps onto a sub-manifold 𝑁 ⊂ 𝑓(Σ𝑓) with derivative 𝑑𝑓𝑝: 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 of constant rank 

across all 𝑝 ∈ 𝑀. This is called a stratification of 𝑓 subordinate to its Thom-Boardman flag. Having an efficient 

algorithm to construct such a stratification opens the door to a host of useful tools from geometry and topology 

being deployed to aid with motion planning and optimization through the singular locus. Moreover, with this 

machinery in hand, we are able to treat singular and non-singular spaces on an equal footing; in particular, we 

allow non-manifold configuration and state spaces.  

APPROACH 

We will assume that the configuration space 𝐶 ⊂ ℝ𝑑 and state space 𝑆 ⊂ ℝ𝑒 are real algebraic varieties, 

i.e., subsets of Euclidean space given as zero sets of polynomials1, while the kinematic map 𝑓: 𝐶 → 𝑆 is the 

restriction of a polynomial function 𝐹: ℝ𝑑 → ℝ𝑒 . Letting 𝑘 ≤ min(𝑑, 𝑒) be the largest rank attained by the 

derivative 𝑑𝐹 on ℝ𝑑, the Thom-Boardman flag [3] of 𝐹 is an increasing sequence 𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂ 𝑉𝑘 = ℝ𝑑 of 

sub-varieties defined as follows: 𝑉𝑖 consists of all those points 𝑝 ∈ ℝ𝑑 for which the rank of 𝑑𝐹𝑝 is ≤ 𝑖. Intersecting 

the 𝑉𝑖 with 𝐶 produces the Thom-Boardman flag of 𝑓, with the singular locus being given by Σ𝑓 = 𝑉𝑘−1 ∩ 𝐶. And 

similarly, the images 𝑈𝑖 = 𝑓(𝑉𝑖 ∩ 𝐶) form a nested sequence of sub-varieties of 𝑆, with 𝑓(Σ𝑓) = 𝑈𝑘−1.  

                                                           
1 All instances of “polynomial” here and elsewhere may be safely replaced by “trigonometric polynomial.” 



SETUP: Real algebraic varieties are rarely smooth manifolds: the picture on the title page, for instance, 

is the zero set of (𝑥4 + 𝑦4 + 𝑥2 + 𝑦2)2 − 9𝑥2𝑦2, and the origin is evidently a non-manifold point. Nevertheless, 

in [4], H. Whitney established that every such variety can be decomposed into finitely many smooth manifold 

pieces of possibly different dimensions, usually called strata, which fit together coherently in the sense that small 

neighbourhoods around two points in the same stratum are geometrically identical. Moreover, the closures of 

these strata are algebraic sub-varieties and hence also admit a finite description as the vanishing locus of certain 

polynomials. These decompositions into strata are called Whitney stratifications. Here is the key object of interest 

for our purposes. 

  DEFINITION: A Thom-Boardman subordinate stratification of 𝑓: 𝐶 → 𝑆 is given by Whitney 

stratifications of 𝐶 and 𝑆 subject to the following requirements: 

1. Every stratum 𝑀 ⊂ 𝐶 lies in a single successive difference 𝑉𝑖 − 𝑉𝑖−1.  

2. Every stratum 𝑁 ⊂ 𝑆 lies in a single successive difference 𝑈𝑗 − 𝑈𝑗−1. 

3. The image 𝑓(𝑀) of a stratum 𝑀 ⊂ 𝐶 is wholly contained in a stratum 𝑁 ⊂ 𝑆. 

4. At each point 𝑝 ∈ 𝑀, the derivative 𝑑𝑓𝑝: 𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is surjective. 

It follows from these requirements that for each stratum 𝑁 ⊂ 𝑆, the restriction 𝑓|𝑓−1(𝑁) is a fiber bundle 

[5] of the form 𝑓−1(𝑁) → 𝑁; and as a consequence, the fibers 𝑓−1(𝑞) and 𝑓−1(𝑞′) share important geometric 

and topological properties whenever both 𝑞 and 𝑞′ belong to the same stratum 𝑁. In particular, the fiber-wise 

homology groups are identical. The ranks of these groups, often called Betti numbers, play a crucial role in 

deciding whether or not a singularity is safe [2].  

WORK PLAN: The starting point of the proposed work is our recent paper [6], where we have 

described the first practical algorithm for constructing Thom-Boardman subordinate stratifications of algebraic 

maps between complex algebraic varieties. This paper also contains the first practical algorithm for constructing 

Whitney stratifications of such varieties, which we have implemented in the Macaulay2 language [7]. All other 

known approaches involve some variant of the cylindrical algebraic decomposition (CAD) algorithm [8], which is 

prohibitively expensive to compute in practice. While our algorithm bypasses CAD entirely through the use of 

conormal maps and Gröbner basis techniques (that are specific to complex varieties), we have collected 

compelling preliminary evidence suggesting that the same methods may also be used to stratify real varieties. 

Over the course of five years, we will build tools to effectively study the singularities of algebraic maps between 

real varieties. 

YEAR 1: We will extend the conormal space-based Whitney stratification algorithm to work for real 

algebraic varieties (such as 𝐶 and 𝑆) and the Thom-Boardman subordinate stratification to real algebraic 

maps (such as 𝑓: 𝐶 → 𝑆); this will include prototype implementation code as well as theoretical 

guarantees of correctness. Towards the end of the year, we will also recruit a postdoc at NC State to 

work with us on this project for the next two years. 

YEAR 2: There is no known effective and practical-to-implement algorithm for computing the Betti 

numbers of fibers of the form 𝑓−1(𝑞) for a given state 𝑞 ∈ 𝑆 directly from the defining equations of 𝑓, 𝐶 

and 𝑆.2 We will establish a sampling theorem to learn the Betti numbers of such fibers from sufficiently 

large point samples using techniques from topological data analysis. The PIs have significant experience 

with such homological inference results [9, 10, 11].  

YEAR 3: For the purposes of efficient optimisation, is it not enough to only know the Betti numbers of 

the fibers of 𝑓, one also requires knowledge of the geometry of the singular locus Σ𝑓 and its image 𝑓(Σ𝑓). 

We will establish homological inference theorems for these two spaces by making use of their Whitney 

stratifications described above; we will also take the opportunity to identify areas of theoretical and 

computational improvement in our stratification and inference algorithms.   

                                                           
2 There are only finitely many computations to perform since we require at most one 𝑞 from each stratum 𝑁 ⊂ 𝑆. 



YEAR 4: We will use knowledge of fiber-wise Betti numbers to identify precisely when a gradient descent 

trajectory is allowed to safely pass from one stratum of the configuration space 𝐶 to another, thus 

augmenting the space of candidate optimal paths to include those which safely permeate the singular 

locus (instead of avoiding it altogether). We will also explore the computation of other stratified invariants 

of 𝑓, including its local Euler obstruction, its action on Chern-Schwartz-MacPherson classes, and its 

characteristic cycles, to see whether these perform any better than fiber-wise Betti numbers for classifying 

kinematic singularities. The PIs have extensive experience with such computations [11, 12, 13]. 

YEAR 5: Here we will explore kinematic problems without any recourse to defining equations. In other 

words, the only knowledge we assume of 𝐶 and 𝑆 are finite point samples, and 𝑓 will only be known as 

a correspondence between these sample points. We hope to establish analogues of the stratification and 

homology inference results proved in previous years to this much more difficult setting. 

PAYOFF 

The most immediate benefit of this project occurs already in Year 1; by the end of this year, we will be 

able to replace infinitely many pointwise fiber Betti number computations by finitely many strata-wise ones. By 

the end of Year 2, we will be able to classify singularities in Σ𝑓 as passable or not with high confidence. By the 

end of Year 3, we will have a framework for optimal control that is unconstrained by superfluous Σ𝑓-avoidance. 

At the end of Year 4, we will generate comprehensive benchmarks comparing stratified invariants in terms of 

how well they are able to classify kinematic singularities. Our most wide-ranging contribution would occur at the 

end of Year 5, where we will be able to extract actionable intelligence from black-box robots with no prior 

knowledge of their governing principles. 

This research will broadly benefit researchers in mathematics as well as kinematics and computer science. 

All theoretical and computational results will be submitted for publication in high-impact international journals, 

such as Advances in Mathematics, Foundations of Computational Mathematics, International Mathematics 

Research Notices, and so forth. All code generated as part of this project will be made freely available under a 

permissive (GPL) license. 
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